Space-Time Texture Analysis in Thermal Infrared Imaging for Classification of Raynaud’s Phenomenon (G. Aretusi et al.)

Lavoro pubblicato sulla rivista scientifica, Complex Data Modeling and Computationally Intensive Statistical Methods, Contribution to Statistics Series, Springer-Verlag, ISBN: 978-88-470-1385-8, 2010.

Abstract

This paper proposes a supervised classification approach for the differential diagnosis of Raynaud’s Phenomenon on the basis of functional infrared imaging (IR) data. The segmentation and registration of IR images are briefly discussed and two texture analysis techniques are introduced in a spatio-temporal framework to deal with the feature extraction problem. The classification of data from healthy subjects and from patients suffering for primary and secondary Raynaud’s Phenomenon is performed by using Stepwise Linear Discriminant Analysis (LDA) on a large number of features extracted from the images. The results of the proposed methodology are shown and discussed for a temporal sequence of images related to 44 subjects.

Dove trovare la pubblicazione

L'articolo è stato pubblicato sulla rivista scientifica Complex Data Modeling and Computationally Intensive Statistical Methods, Contribution to Statistics Series, Springer-Verlag, ISBN: 978-88-470-1385-8, 2010.

Ultimi articoli

Matematica finanziaria e Econometria 15 Aprile 2021

Software. Francese

L'applicativo Francese, sviluppato in collaborazione con il Data Mining Lab - DMLab, è dedicato ai prestiti graduali a rata costante posticipata e consente di elaborare i piani di ammortamento e calcolare i tassi applicati all'operazione sia in regime composto che in regime semplice degli interessi.

torna all'inizio del contenuto